3D-QSAR Study of Combretastatin A-4 Analogs Based on Molecular Docking.

نویسندگان

  • Yinghua Jin
  • Ping Qi
  • Zhiwei Wang
  • Qirong Shen
  • Jian Wang
  • Weige Zhang
  • Hongrui Song
چکیده

Combretastatin A-4 (CA-4), its analogues and their excellent antitumoral and antivascular activities, have attracted considerable interest of medicinal chemists. In this article, a docking simulation was used to identify molecules having the same binding mode as the lead compound, and 3D-QSAR models had been built by using CoMFA based on docking. As a result, these studies indicated that the QSAR models were statistically significant with high predictabilities (CoMFA model, q2 = 0.786, r2 = 0.988). Our models may offer help to better comprehend the structure-activity relationships for this class of compounds and also facilitate the design of novel inhibitors with good chemical diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of potential tubulin polymerization inhibitors by 3D-QSAR, molecular docking and molecular dynamics

Combretastatin A-4 (CA-4) is one of the most potent tubulin polymerization inhibitors. In this paper, the identification of some new CA-4 analogues as potential tubulin polymerization inhibitors is performed by combination of molecular modeling techniques including 3D-QSAR, molecular docking and molecular dynamics (MD) simulation. The built 3D-QSAR models show significant statistical quality an...

متن کامل

3D-QSAR and docking analysis on a series of multi-cyclin-dependent kinase inhibitors using CoMFA, and CoMSIA

A series of 42 Pyrazolo[4,3-h]quinazoline-3-carboxamides as multi-cyclin-dependent kinaseinhibitors regarded as promising antitumor agents to complement the existing therapies, wassubjected to a three-dimensional quantitative activity relationship (3D QSAR). Different QSARmethods, comparative molecular field analysis (CoMFA), CoMFA region focusing, andcomparative molecular similarity indices an...

متن کامل

QSAR, Docking and Molecular Dynamics Studies on the Piperidone-grafted Mono- and Bis-spiro-oxindole-hexahydropyrrolizines as Potent Butyrylcholinesterase Inhibitors

ABSTRACT: Quantitative structure-activity relationship (QSAR) study on the piperidone-grafted mono- and bis-spirooxindole-hexahydropyrrolizines as potent butyrylcholinestrase (BuChE) inhibitors were carried out using statistical methods, molecular dynamics and molecular docking simulation. QSAR methodologies, including classification and regression tree (CART), multiple linear regression (MLR),...

متن کامل

Pharmacophore and 3D-QSAR Characterization of 6-Arylquinazolin-4-amines as Cdc2-like Kinase 4 (Clk4) and Dual Specificity Tyrosine-phosphorylation-regulated Kinase 1A (Dyrk1A) Inhibitors

Cdc2-like kinase 4 (Clk4) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) are protein kinases that are promising targets for treatment of diseases caused by abnormal gene splicing. 6-Arylquinazolin-4-amines have been recently identified as potent Clk4 and Dyrk1A inhibitors. In order to understand the structure-activity correlation of these analogs, we have applied lig...

متن کامل

Structural Determination of Three Different Series of Compounds as Hsp90 Inhibitors Using 3D-QSAR Modeling, Molecular Docking and Molecular Dynamics Methods

Hsp90 is involved in correcting, folding, maturation and activation of a diverse array of client proteins; it has also been implicated in the treatment of cancer in recent years. In this work, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), molecular docking and molecular dynamics were performed on three different series of Hsp90 inhibit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 2011